The homology groups of $P^n:=\bR P^n$ can be easily computed using cellular homology.
Here is an attempt to compute them by induction using the long exact sequence of homology. We want to prove that $H_m(P^n)=\mathbb{Z_2}$ for $m<n$ odd, $\mathbb{Z}$ for $m=0$, $0$ for $m$ even and $\mathbb{Z}$ if $m=n$ is odd. The case $n=2$ has already been proven here and $P^1\cong S^1$. My attempt goes like this:
Let first $n>1$ be odd, and let's suppose for every $k<n$ the homology groups are as stated above. Then, using the fact that $P^{n-1}\subseteq P^n$ (As the projection of the points in $S^n$ which have a fixed coordinate null) and that $P^n/P^{n-1}\cong S^n$ we have a long exact sequence of (reduced) homology:
$$\cdots \to H_m(P^{n-1})\to H_m(P^n)\to H_m(S^n)\to H_{m-1}(P^{n-1})\to \cdots$$
and in particular, taking $m=n$ we have
$$\cdots \to H_n(P^{n-1})\to H_n(P^n)\to H_n(S^n)\to H_{n-1}(P^{n-1})\to \cdots$$
which gives us ($n-1$ is even), since $H_n(P^{n-1})=H_{n-1}(P^{n-1})=0$, the exact sequence
$$0\to H_n(P^n)\to \mathbb{Z}\to 0$$
and this gives an isomorphism between $\mathbb{Z}$ and $H_n(P^n)$.
Similarly, for $1\leq m<n$ with $m$ odd (If this case is possible), and since $H_m(P^{n-1})=\mathbb{Z}_2$ we have the exact sequence
$$0 \to \mathbb{Z}_2\to H_m(P^n)\to 0$$
and this gives an isomorphism between $\mathbb{Z}$ and $H_n(P^n)$.
Lastly, for $1<m<n$ even, and since $H_m(P^{n-1})=H_m(S^n)=0$ we have the exact sequence
$$0 \to H_m(P^n)\to 0$$
which means that $H_m(P^n)=0$.
So, for $n$ odd the job is done.
Similarly, take $n$ even and suppose that for every $k<n$ the homology groups are as stated above. Then take the long exact sequence:
$$\cdots \to H_m(P^{n-1})\to H_m(P^n)\to H_m(S^n)\to H_{m-1}(P^{n-1})\to \cdots$$
For $1\leq m< n-1$ odd we have $H_m(P^{n-1})=\mathbb{Z}_2$ and $H_m(S^n)=0$. Also $H_{m+1}(S^{n})=0$. So we have the exact sequence
$$0 \to H_m(P^{n-1})\to H_m(P^n)\to 0$$
which gives an isomorphism between $H_m(P^{n-1})$ and $H_m(P^n)$, so both of them are $\mathbb{Z}_2$.
For $1<m<n$ even we have, since $H_m(P^{n-1})=0$ and $H_m(S^n)=0$, the sequence
$$0\to H_m(P^n)\to 0$$
which results in $H_m(P^n)=0$.
The homology groups we haven't calculated yet are just the ones at the start of the long exact sequence, which is, since $H_n(P^{n-1})=0$,
$$0\to H_n(P^n)\to \mathbb{Z}\stackrel{\partial}{\to} \mathbb{Z}\to H_{n-1}(P^n)\to 0.$$
So what is left to prove is that the homomorphism $\partial$ is just multiplication by $2$. This is just a higher dimensional version of the problem here, and if can prove that, the result follows.
\(\newcommand{\fA}{\mathfrak{A}}
\newcommand{\fB}{\mathfrak{B}}
\newcommand{\fC}{\mathfrak{C}}
\DeclareMathOperator{\Res}{Res}
\newcommand{\fD}{\mathfrak{D}}
\newcommand{\fE}{\mathfrak{E}}
\newcommand{\fF}{\mathfrak{F}}
\newcommand{\fG}{\mathfrak{G}}
\newcommand{\fH}{\mathfrak{H}}
\newcommand{\fI}{\mathfrak{I}}
\newcommand{\fJ}{\mathfrak{J}}
\newcommand{\fK}{\mathfrak{K}}
\newcommand{\fL}{\mathfrak{L}}
\newcommand{\fM}{\mathfrak{M}}
\newcommand{\fN}{\mathfrak{N}}
\newcommand{\fO}{\mathfrak{O}}
\newcommand{\fP}{\mathfrak{P}}
\newcommand{\fQ}{\mathfrak{Q}}
\newcommand{\fR}{\mathfrak{R}}
\newcommand{\fS}{\mathfrak{S}}
\newcommand{\fT}{\mathfrak{T}}
\newcommand{\fU}{\mathfrak{U}}
\newcommand{\fV}{\mathfrak{V}}
\newcommand{\fW}{\mathfrak{W}}
\newcommand{\fX}{\mathfrak{X}}
\newcommand{\fY}{\mathfrak{Y}}
\newcommand{\fZ}{\mathfrak{Z}}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\cB}{\mathcal{B}}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\cD}{\mathcal{D}}
\newcommand{\cE}{\mathcal{E}}
\newcommand{\cF}{\mathcal{F}}
\newcommand{\cG}{\mathcal{G}}
\newcommand{\cH}{\mathcal{H}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\cJ}{\mathcal{J}}
\newcommand{\cK}{\mathcal{K}}
\newcommand{\cL}{\mathcal{L}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cN}{\mathcal{N}}
\newcommand{\cO}{\mathcal{O}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cQ}{\mathcal{Q}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\cX}{\mathcal{X}}\newcommand{\cx}{\chi}
\newcommand{\cY}{\mathcal{Y}}
\newcommand{\cZ}{\mathcal{Z}}
\DeclareMathOperator{\Aut}{Aut}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bH}{\mathbb{H}}
\newcommand{\bI}{\mathbb{I}}
\newcommand{\bJ}{\mathbb{J}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bL}{\mathbb{L}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bQ}{\mathbb{Q}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bS}{\mathbb{S}}
\newcommand{\bT}{\mathbb{T}}
\newcommand{\bU}{\mathbb{U}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bW}{\mathbb{W}}
\newcommand{\bX}{\mathbb{X}}
\newcommand{\bY}{\mathbb{Y}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\ce}{\mathcal{e}}
\newcommand{\fe}{\mathfrak{e}}
\newcommand{\p}{\overline{p}}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\rad}{rad}
\DeclareMathOperator{\spec}{Spec}
\DeclareMathOperator{\diam}{diam}
\DeclareMathOperator{\maxspec}{maxSpec}
\DeclareMathOperator{\Ann}{Ann}
\DeclareMathOperator{\Ass}{Ass}
\require{AMScd}\)