\(\newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \DeclareMathOperator{\Res}{Res} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}}\newcommand{\cx}{\chi} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \DeclareMathOperator{\Aut}{Aut} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} \newcommand{\ce}{\mathcal{e}} \newcommand{\fe}{\mathfrak{e}} \newcommand{\p}{\overline{p}} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\spec}{Spec} \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\maxspec}{maxSpec} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Ass}{Ass} \require{AMScd}\)

Tuesday, August 28, 2018

An attempt to find the homology groups of $\bR P^n$ without using cellular homology

The homology groups of $P^n:=\bR P^n$ can be easily computed using cellular homology.
Here is an attempt to compute them by induction using the long exact sequence of homology. We want to prove that $H_m(P^n)=\mathbb{Z_2}$ for $m<n$ odd, $\mathbb{Z}$ for $m=0$, $0$ for $m$ even and $\mathbb{Z}$ if $m=n$ is odd. The case $n=2$ has already been proven here and $P^1\cong S^1$. My attempt goes like this:

 Let first $n>1$ be odd, and let's suppose for every $k<n$ the homology groups are as stated above. Then, using the fact that $P^{n-1}\subseteq P^n$ (As the projection of the points in $S^n$ which have a fixed coordinate null) and that $P^n/P^{n-1}\cong S^n$ we have a long exact sequence of (reduced) homology:
$$\cdots \to H_m(P^{n-1})\to H_m(P^n)\to H_m(S^n)\to H_{m-1}(P^{n-1})\to \cdots$$
and in particular, taking $m=n$ we have
$$\cdots \to H_n(P^{n-1})\to H_n(P^n)\to H_n(S^n)\to H_{n-1}(P^{n-1})\to \cdots$$
which gives us ($n-1$ is even), since $H_n(P^{n-1})=H_{n-1}(P^{n-1})=0$, the exact sequence
$$0\to H_n(P^n)\to \mathbb{Z}\to 0$$
and this gives an isomorphism between $\mathbb{Z}$ and $H_n(P^n)$.

Similarly, for $1\leq m<n$ with $m$ odd (If this case is possible), and since $H_m(P^{n-1})=\mathbb{Z}_2$ we have the exact sequence
$$0 \to \mathbb{Z}_2\to H_m(P^n)\to 0$$
and this gives an isomorphism between $\mathbb{Z}$ and $H_n(P^n)$.

Lastly, for $1<m<n$ even, and since $H_m(P^{n-1})=H_m(S^n)=0$ we have the exact sequence
$$0 \to H_m(P^n)\to 0$$
which means that $H_m(P^n)=0$.

So, for $n$ odd the job is done.

Similarly, take $n$ even and suppose that for every $k<n$ the homology groups are as stated above. Then take the long exact sequence:
$$\cdots \to H_m(P^{n-1})\to H_m(P^n)\to H_m(S^n)\to H_{m-1}(P^{n-1})\to \cdots$$
For $1\leq m< n-1$ odd we have $H_m(P^{n-1})=\mathbb{Z}_2$ and $H_m(S^n)=0$. Also $H_{m+1}(S^{n})=0$. So we have the exact sequence
$$0 \to H_m(P^{n-1})\to H_m(P^n)\to 0$$
which gives an isomorphism between $H_m(P^{n-1})$ and $H_m(P^n)$, so both of them are $\mathbb{Z}_2$.
For $1<m<n$ even we have, since $H_m(P^{n-1})=0$ and $H_m(S^n)=0$, the sequence
$$0\to H_m(P^n)\to 0$$
which results in $H_m(P^n)=0$.

The homology groups we haven't calculated yet are just the ones at the start of the long exact sequence, which is, since $H_n(P^{n-1})=0$,
$$0\to H_n(P^n)\to \mathbb{Z}\stackrel{\partial}{\to} \mathbb{Z}\to H_{n-1}(P^n)\to 0.$$

So what is left to prove is that the homomorphism $\partial$ is just multiplication by $2$. This is just a higher dimensional version of the problem here, and if can prove that, the result follows.

No comments:

Post a Comment