\(\newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \DeclareMathOperator{\Res}{Res} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}}\newcommand{\cx}{\chi} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \DeclareMathOperator{\Aut}{Aut} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} \newcommand{\ce}{\mathcal{e}} \newcommand{\fe}{\mathfrak{e}} \newcommand{\p}{\overline{p}} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\spec}{Spec} \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\maxspec}{maxSpec} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Ass}{Ass} \require{AMScd}\)

Friday, May 25, 2018

About the Fundamental Group of a Topological Group

Proposition. Let $(G,\cdot)$ be a topological group. Let $C_e$ be the path-connected component of the identity $e$. Then

  1. $C_e$ is a topological group.
  2. $\pi_1(C_e,e)$ is abelian.
  3. For any $g\in G$, $\pi_1(G,g)$ is abelian.
Lemma. Let $(G,\cdot,*)$ be a set with two binary operations on it. Also suppose that both operations have a common identity $e$ and for any $g,h,j,k\in G$,
$$(g\cdot h)*(j\cdot k)=(g*j)\cdot(h*k).$$
Then $*=\cdot$ and $*$ is commutative.

Proof of Lemma. If $g,h\in G$ then $$g * h=(e\cdot g)* (h\cdot e)=(e*h)\cdot(g*e)=h\cdot g=(h*e)\cdot (e*g)=(h\cdot e)*(e\cdot g)=h*g.$$
The result follows.

Proof of Proposition. To prove 1. remember that for $u\in G$, $\phi_u:G\to G$ given by $x\mapsto xu$ is a homeomorphism. Also denote $*$ as the product of paths or homotopy classes of paths. Now take paths $\alpha:e\leadsto g$ and $\beta:e\leadsto h$. Then since $\phi_h$ is continuous, $\phi_h\circ \alpha:h\leadsto gh$, so $gh\in C_e$. Also $\phi_{g^{-1}}\circ \alpha: g^{-1}\leadsto e$, so $g^{-1}\in G$. So $C_e\leq G$ and since the restrictions of $*$ and $\square ^{-1}$ are well defined in $C_e$, then $C_e$ is a topological group.

To prove 2. define $[\alpha]\cdot[\beta]=[\alpha\cdot \beta]$ where $(\alpha\cdot\beta)(s)=\alpha(s)\beta(s)$. This operation is well defined on homotopy classes, since $\alpha\simeq_{\text{Rel}0,1}^H\alpha'$ and $\beta\simeq_{\text{Rel}0,1}^J\beta'$ then the function $H\cdot J$ is a homotopy, relative to $0,1$ between $\alpha\cdot\beta$ and $\alpha'\cdot\beta'$.

So now there are two binary operations on $\pi_1(C_e,e)$, given by $*$ and $\cdot$. The homotopy class $[c_e]$ of the constant loop $c_e$ is the identity of $(\pi_1(C_e,e),*)$. But it's also an identity in $(pi_1(C_e,e),\cdot)$. Indeed, if $\alpha$ is a loop starting at $e$, then $$(c_e\cdot \alpha)(s)=c_e(s)\alpha(s)=e\alpha(s)=\alpha(s)=\alpha(s)e=\alpha(s)c_e(s)=(\alpha\cdot c_e)(s).$$

Also, if $\alpha,\beta,\gamma,\delta$ are loops in $e$, then for $0\leq s\leq 1$
$$\begin{align*}(\alpha\cdot \beta)*(\gamma\cdot \delta)(s) &=\left\{\begin{array}{cc}\alpha(2s)\beta(2s) & 0\leq s\leq \frac{1}{2}\\\gamma(2s-1)\delta(2s-1) & \frac{1}{2}\leq s\leq 1\end{array}\right.\\ &= (\alpha *\gamma)\cdot(\beta *\delta)(s).\end{align*}(s)$$
so taking homotopy classes
$$([\alpha]\cdot[\beta])*([\gamma]\cdot [\delta])=([\alpha]*[\gamma])\cdot([\beta] *[\delta]).$$

As a result of the lemma $*=\cdot$ and $*$ is commutative, so $\pi_1(C_e,e)$ is abelian.

To prove 3. note that $\pi_1(G,e)=\pi_1(C_e,e)$ and for $g\in G$, $\phi_{g*}:\pi_1(G,e)\to \pi_1(G,g)$ is an isomorphism. The result follows. 

No comments:

Post a Comment