\(\newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \DeclareMathOperator{\Res}{Res} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}}\newcommand{\cx}{\chi} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \DeclareMathOperator{\Aut}{Aut} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} \newcommand{\ce}{\mathcal{e}} \newcommand{\fe}{\mathfrak{e}} \newcommand{\p}{\overline{p}} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\spec}{Spec} \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\maxspec}{maxSpec} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Ass}{Ass} \require{AMScd}\)

Friday, May 25, 2018

Using the Argument Principle for Counting Roots

Let $f(z)=z^{11}-2z^6+z^4+10i$. We want to find the number of roots of $f$ which are in the upper semiplane. By the Argument Principle, if $\gamma$ is a curve which has no roots of $f$ and $n_f$ is the number of roots of $f$ in the upper plane counting multiplicities, then
$$n_f=\frac{1}{2\pi i} \int_\gamma \frac{f''(z)}{f(z)}dz=\int_{f(\gamma)}\frac{dw}{w}=n(f\circ \gamma,0)$$
where $n(-,0)$ is the winding number of $-$ around $0$.

So, now take $R$ so big, that $f$ doesn't vanish when $|z|\geq R$, and such that $f(z)\sim z^{11}$.
Take $\gamma$ as the upper half circle of radius $R$ followed by the segment between $-R$ and $R$:


Also note that there are no real roots of $f$, since for $z$ real, $f(z)=0$ means $10i=0$. So, now we can use the Argument Principle, since there are no roots of $f$ on $\gamma$. Furthermore, $R$ is big enough to say that every root of $f$ is inside $\gamma$. Next we must see how $f\circ \gamma$ behaves.

When $\gamma$ does a half-twist around $0$, $f\circ \gamma$ does five twists and almost an extra half, ending at some point $x+10i$ where $x\in\mathbb{R}$. Then $f\circ\gamma$ goes somehow, around the line $y=10i$, from $x+10i$ to the starting point. Since that's done over the real axis, it doesn't make the extra twist around $0$. So $n(f\circ\gamma,0)=5$: That's the number of roots.


In the picture it can be seen the number of twists, and how the last one doesn't complete itself.

No comments:

Post a Comment