\(\newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \DeclareMathOperator{\Res}{Res} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}}\newcommand{\cx}{\chi} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \DeclareMathOperator{\Aut}{Aut} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} \newcommand{\ce}{\mathcal{e}} \newcommand{\fe}{\mathfrak{e}} \newcommand{\p}{\overline{p}} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\spec}{Spec} \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\maxspec}{maxSpec} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Ass}{Ass} \require{AMScd}\)

Tuesday, May 29, 2018

Monodromy

This is almost totally taken from Hatcher's book.

Let $p:\cX\to X$ is a covering space of a path-connected, locally path-connected space which admits a universal cover $q:U\to X$, and let $\gamma:x_0\leadsto x_1$ be a curve on $X$. Then there is a map $L_\gamma: p^{-1}(x_1)\to p^{-1}(x_0)$ given by $L_\gamma(\cx_1)=\cx_0$ where $\cx_0=\tilde{\gamma}(0)$ and $\tilde{\gamma}$ is a lift of $\gamma$ ending at $\cx_1$, which is a bijection, since it has an inverse $L_\overline{\gamma}$. If $c_{x_0}$ is the constant loop at $x_0$, then $L_{c_{x_0}}=1_{p^{-1}(x_0)}$, and $L_{\gamma*\gamma'}=L_\gamma L_{\gamma'}$. Furthermore, if $\gamma$ is a loop with endpoint $x_0$, then $L_\gamma\in S_{p^{-1}(x_0)}$. The map $[\gamma]\mapsto L_\gamma$ is then (Since it doesn't depend on the representative of the homotopy class of $\gamma$) an homomorphism; i.e. a permutation representation of an action $\pi_1(X,x_0)$ on $p^{-1}(x_0)$, given naturally by
$$[\gamma]\cdot \cx=L_\gamma (\cx).$$

It can be proved (See Hatcher's Algebraic Topology, pages 68-70) that a covering space is uniquely determined by this action (up to isomorphism). We'll prove a part of it, as an exercise.

Proposition 1. Let now $p:\cX\to X, r:\cY\to X$ be isomorphic covering spaces. Then the group actions induced by them are isomorphic.

Proof. Let $\phi:\cX\to \cY$ be an isomorphism, i.e. a homeomorphism such that $p=r\circ \phi$. Let $\cF=p^{-1}(x_0),\cG=r^{-1}(x_0)$. Then $\phi|_{\cF}$ is a bijection $\cF\to\cG$. Indeed, if $f\in \cF$, then $r(\phi(f))=p(f)=x_0$, so $\phi(f)\in \cG$. Analogously, $\im\phi^{-1}|_{\cG}\subseteq \cF$, so $\phi^{-1}_{\cG}$ is its inverse, and $\phi|_{\cF}$ is a bijection. Let $[\gamma]\in \pi_1(X,x_0)$. We'll prove that $\phi([\gamma]f)=[\gamma]\phi(f)$. Indeed, $[\gamma]f=L^\cX_\gamma(f)=\tilde{\gamma}(0)$ where $\tilde{\gamma}$ is a lift of $\gamma$ in $\cX$, ending at $f$. But $\phi\circ\tilde\gamma$ is a lift of $\gamma$ in $\cY$ ending at $\phi(f)$, thus $\phi(\tilde\gamma(0))=L^{\cY}_\gamma(\phi(f))=[\gamma]\phi(f)$. So $\phi$ is an isomorphism of $\pi_1(X,x_0)-$sets, the required result.

It can be seen, in Hatcher's book, that given a group action of $\pi_1(X,x_0)$ on a set $F$ and a fixed point $u_0$ such that $q(u_0)=x_0$, we can build the covering space $U\times F/\sim$ where $(u,f)\sim (u',f')$ if $q(u)=q(u')$ and $[(q\circ\alpha')(\overline{q\circ\alpha})]f=f'$ and $\alpha:u_0\leadsto u,\alpha':u_0\leadsto u'$. Also, the covering map $p:U\times F/\sim \to X$ is given by $p([u,f])=q(u)$, and the fiber $p^{-1}(x_0)$ is in a 1-1 correspondence with $F$ such that the actions are essentially equivalent.

This said, we can prove the converse of Proposition 1.

Proposition 2. Let $F,F'$ be isomorphic $\pi_1(X,x_0)-$sets. Then the associated covering spaces are isomorphic.

Proof. Take $\phi:F\to F'$ a $\pi_1(X,x_0)-$isomorphism (Which is obviously a homeomorphism, taking discrete topologies), and define the obviously homeomorphism $\varphi:U\times F\to U\times F'$ given by $(u,f)\mapsto (u,\phi(f))$.

See that $(u,f)\sim_F (u',f')$ iff $q(u)=q(u')$ and $[(q\circ \alpha')(\overline{q\circ\alpha})]f=f'$ for $\alpha:u_0\leadsto u, \alpha':u_0\leadsto u'$. But since $\phi$ is a $\pi_1(X,x_0)-$isomorphism, this occurs iff $q(u)=q(u')$ and $[(q\circ \alpha')(\overline{q\circ\alpha})](\phi (f))=\phi (f')$, which occurs iff $(u,\phi(f))\sim_{F'}(u',\phi (f'))$. Thus $\varphi$ becomes a homeomorphism of the quotients:
\begin{CD} U\times F @>{\varphi}>> U\times F'\\ @VVV @VVV\\ U\times F/\sim_F@>{\varphi}>> U\times F'/\sim_{F'}\end{CD}

Furthermore, $p_{F'}\circ\varphi([u,f])=p_F([u,\phi (f)])=q(u)=p_F([u,f])$, so $\varphi$ is really a covering space isomorphism, which is the desired result.

No comments:

Post a Comment