\(\newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \DeclareMathOperator{\Res}{Res} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}}\newcommand{\cx}{\chi} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \DeclareMathOperator{\Aut}{Aut} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} \newcommand{\ce}{\mathcal{e}} \newcommand{\fe}{\mathfrak{e}} \newcommand{\p}{\overline{p}} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\spec}{Spec} \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\maxspec}{maxSpec} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Ass}{Ass} \require{AMScd}\)

Sunday, June 17, 2018

An Application of Schwarz Lemma

Schwarz Lemma (Theorem 4.3.4.13 of Ahlfors Complex Analysis).  Let $f$ be holomorphic on $B_1(0)$ such that $|f(z)|\leq 1$ and $f(0)=0$. Then, for all $z$, $|f(z)|\leq |z|$ and  $|f'(0)|\leq 1$. If $|f(z)|=|z|$ for some $z\neq 0$, or if $|f'(0)|=1$, then $f(z)=cz$ with a constant $c$ of absolute value $1$.
Lemma. Let $\mu(z)=\frac{z-a}{\overline{a}z-1}$ for a fixed $a\in B_1(0)$ and each $z\in \bC$. Then $\mu(B_1(0))= B_1(0)$.
Proof. First note that  $|\mu(0)|=|a|<1$.  Furthermore,
$$|\mu(1)|=\left|\frac{1-a}{\overline{1-a}}\right|=1,|\mu(-1)|=\left|\frac{1+a}{\overline{a+1}}\right|=1$$
and
$$|\mu(i)|=\left|\frac{i-a}{\overline{a}i-1}\right|=\left|\frac{i-a}{-\overline{a}-i}\right|=\left|\frac{i-a}{\overline{i-a}}\right|=1.$$
So $\mu$ is a Möbius transformation sending $\partial B_1(0)$ to $\partial B_1(0)$. Since $0$ is sent into $B_1(0)$, then $\mu(B_1(0))=B_1(0)$.
Exercise. Let $g:B_1(0)\to B_1(0)$ be a holomorphic function such that $g(\frac{1}{2})=0$. Then $|g(0)|\leq \frac{1}{2}$.
Proof. We'll use part of the proof of the Schwarz-Pick theorem, along with the facts that the Möbius transformations used are involutions.
Let $$\mu(z)=\frac{\frac{1}{2}-z}{1-\frac{z}{2}}.$$
Take $f=g\circ\mu$. Then $f(B_1(0))\subseteq B_1(0)$
and $f(0)=g\left(\frac{1}{2}\right)=0.$
Applying Schwarz Lemma, $|f(z)|\leq |z|$ for all $z$. But then,
$$\left|g\left(\frac{\frac{1}{2}-z}{1-\frac{z}{2}}\right)\right|\leq |z|,$$
which for $z=\frac{1}{2}$ gives
$$\left|g(0)\right|\leq \frac{1}{2},$$
the desired result.


Note: In the proof of the Schwarz-Pick Theorem the inverse $\mu^{-1}$ is used instead of $\mu$, and there is a second Möbius transformation which in this case is $\lambda(z)=-z$. So in this case $\mu=\mu^{-1}$ and $\lambda$ can be removed.

No comments:

Post a Comment