\(\newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \DeclareMathOperator{\Res}{Res} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}}\newcommand{\cx}{\chi} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \DeclareMathOperator{\Aut}{Aut} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} \newcommand{\ce}{\mathcal{e}} \newcommand{\fe}{\mathfrak{e}} \newcommand{\p}{\overline{p}} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\spec}{Spec} \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\maxspec}{maxSpec} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Ass}{Ass} \require{AMScd}\)

Saturday, June 16, 2018

The Fundamental Group of a Sphere with Two Points Identified.

This is exercise 1.2.7. from Hatcher's book.
Lemma (Proposition 1.26.(a), Page 50 of Hatcher's Algebraic Topology).
If $Y$ is a cell complex obtained from a cell complex $X$ by attaching $2-$cells $e_{\alpha}^2$, $\alpha\in \Lambda$ by attaching maps $\phi_\alpha: S^1\to X$, then the inclusion $X\hookrightarrow Y$ induces a surjection $\pi_1(X,x_0)\to \pi_1(Y,x_0)$ whose kernel is $N=\langle[\gamma_\alpha \phi_\alpha\overline{\gamma}_\alpha]\mid \alpha\in \Lambda, \gamma_\alpha:x_0\to \phi_\alpha(1)\rangle$  where the $\phi_{\alpha}$ are seen as loops.
Exercise. Let $X$ be the quotient space of $S^2$ obtained by identifying the north and south poles to a single point. Put a cell complex structure on $X$ and use this to compute $\pi_1(X)$.

Solution. We can give $S^2$ the usual cell structure with one $0-$cell $a$ and one $2-$cell attached by the only map $S^2\to \{a\}$. Instead, we can give $S^2$ another cell structure from $S^1$ pasting two $2-$cells to the $1-$cell structure of $S^1$. We can also define a $2-$cell structure on $S^2$ by starting with two points $n,s$, two $1-$cells $\gamma,\delta$ between $n$ and $s$, and two $2-$cells pasted into $\alpha\beta$. This last approach works, since then we are giving $X$ the structure of the quotient complex $S^2/\{n,s\}$. It also gives a cell complex structure to $S^1$ starting with two points and attaching two $1-$cells.

We can instead think of it geometrically. When identifying the poles of the sphere with a point the resulting figure seems like a torus with a generating circle identified to a point. This determines the cell structure shown by the next drawing:
Here we have $X$ built from $S_1=\text{im}\alpha$ by attaching a $2$-cell by the map $\phi=\alpha\overline{\alpha}$ which is nullhomotopic. So, by the lemma, the homomorphism
$$\pi_1(S^1,v_1)\to \pi_1(X,v_1)$$
induced by the inclusion is an isomorphism, and $\pi_1(X,v_1)\cong \bZ$.

No comments:

Post a Comment