\(\newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \DeclareMathOperator{\Res}{Res} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}}\newcommand{\cx}{\chi} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \DeclareMathOperator{\Aut}{Aut} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} \newcommand{\ce}{\mathcal{e}} \newcommand{\fe}{\mathfrak{e}} \newcommand{\p}{\overline{p}} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\spec}{Spec} \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\maxspec}{maxSpec} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Ass}{Ass} \require{AMScd}\)

Saturday, June 30, 2018

Just Calculate the Residues

In an exam for a course of Complex Analysis last year they asked to compute the following integral:
$$\int_{\partial B_1 (0)} \frac{dz}{(e^{2\pi z}+1)^2}.$$ To compute it, we only have to calculate the residues at $\pm \frac{i}{2}$, the zeros of $(e^{2\pi z}+1)^2$ inside $B_1(0)$.

To do this we'll calculate the relevant coefficient $d_{-1}$ of the Laurent series of $\frac{1}{(e^{2\pi z}+1)^2}$ at $\pm \frac{i}{2}$. It's easy enough. Let $f(x)=e^{2\pi z}+1$.  Let's suppose we know (And it's true that we know) how to calculate its Maclaurin series:
$$f(z)=\sum_{n=0}^\infty a_n (z-z_0)^n$$
where the $z_0$ in the right side can be replaced by $\pm \frac{i}{2}$. Let $g(z)=\frac{1}{f(z)}$ have a Laurent series expansion
$$g(z)=\sum_{n=-1}^{\infty} b_n (z-z_0)^n$$
in a neighborhood $U$ of $z_0$ (We can do this since $z_0$ is a simple zero of $f$).

Then $f(z)g(z)=1$ in $U$. With this fact we'll compute the terms $b_{-1}=\Res_{z_0} g$ and $b_0$. In the product of the series, the coefficient of $z_0$ is $1=c_{0}=a_0b_0+a_1b_{-1}$. Since $a_0=0$, then $1=a_1 b_{-1}$ so that $b_{-1}=\frac{1}{a_1}=\frac{1}{f'(z_0)}$(This fact is well known). In the same way we can see that
$$a_0 b_1+a_1 b_0+a_2 b_{-1}=0$$
which results in
$$a_1 b_0+a_2 b_{-1}=0$$
or
$$b_0=-\frac{a_2}{a_1^2}=-\frac{1}{2}\frac{f''(z_0)}{f'(z_0)^2}.$$
We have now calculated enough terms. Now, knowing that
$$g(z)=\sum_{n=-1}^\infty b_n z^n$$
we must only calculate the residues of $g(z)^2$ at $z_0$.
But, as before, the coefficient $d_{-1}$ of $z^{-1}$ will be
$$d_{-1}=b_0 b_{-1}+b_{-1}b_0=2b_0 b_{-1}=-\frac{2}{f'(z_0)}\frac{1}{2}\frac{f''(z_0)}{f'(z_0)^2}=-\frac{f''(z_0)}{f'(z_0)^3}.$$

Now we're ready. See that $f'(z)=2\pi e^{2\pi z},f''(z)=(2\pi)^2 e^{2\pi z}$, and since $e^{2\pi z_0}=-1$, $f'(z_0)=-2\pi,f''(z_0)=-4\pi^2$.

So $\Res_{z_0} \frac{1}{e^{2\pi z}+1}=d_{-1}=-\frac{-4\pi ^2}{-2\pi (4\pi ^2)}=-\frac{1}{2\pi}$.

And last, by the residue theorem,
$$\int_{\partial B_1(0)} \frac{dz}{(e^{2\pi z}+1)^2}=2\pi i \frac{-1}{2\pi}+2\pi i \frac{-1}{2\pi}=-2i.$$

No comments:

Post a Comment