\(\newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \DeclareMathOperator{\Res}{Res} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}}\newcommand{\cx}{\chi} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \DeclareMathOperator{\Aut}{Aut} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} \newcommand{\ce}{\mathcal{e}} \newcommand{\fe}{\mathfrak{e}} \newcommand{\p}{\overline{p}} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\spec}{Spec} \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\maxspec}{maxSpec} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Ass}{Ass} \require{AMScd}\)

Monday, July 2, 2018

Universal Abelian Covering Space

This exercise from Hatcher's book is just an application of group theory:

Exercise (Part 1). For a path-connected, locally path-connected, and semilocally simply-connected space $X$, call a path-connected covering space $E\to X$ abelian if it is normal and has abelian deck transformation group. Show that $X$ has an abelian covering space that a covering space of every other abelian covering space of $X$, and that such a 'universal' abelian covering space is unique up to isomorphism.

Proof. To prove existence, take $N=\pi_1(X)'=[\pi_1(X),\pi_1(X)]$. Then there exists a covering space $p':X'\to X$ uniquely determined by $N$. It's normal since $X$ is path-connected and $N\trianglelefteq \pi_1(X)$, and it's abelian since $G/G'$ is abelian for any group $G$. Furthermore every subgroup $H\trianglelefteq G$ such that $G/H$ is abelian contains the commutator $G'$, so if $p:E\to X$ is an abelian covering space, then
$$H=\im p'_{*}\leq \im p_{*}=\pi_1(E)$$
so $p'$ lifts to a map $\tilde{p}':X'\to E$ which, by the lemma 1234567 here is a covering map. We're now done with the existence. To prove uniqueness, let's suppose $Y$ is such a covering space. Then since $X'$ is abelian, $Y$ is a covering space of $X$, so that $\pi_1(Y)\leq N$. Furthermore $Y$ is abelian, so $N\leq \pi_1(Y)$. Thus $N=\pi_1(Y)$ and by uniqueness of $X'$ as the covering space associated by the commutator, $X'\cong Y$.

Exercise (Part 2). Describe this covering space explicitly for $X=S^1\vee S^1$ and $X=S^1\vee S^1\vee S^1$.

Solution. When $X=S^1\vee S^1$, take $E=\bR\times \bZ\cup \bZ\times \bR$ the integer grid of $\bR^2$ and let $\bZ\times \bZ$ act on $E$ by $(m,n)(x,y)=(x+m,y+n)$. Furthermore, each $(x,y)\in E$ has a neighborhood $U$ such that $(m,n)U\cap U\neq \varnothing$ only when $(m,n)=(0,0)$, so this action is a covering space action. So the quotient map $p:E\to E/\bZ\times \bZ$ is a normal covering map and $\bZ\times \bZ$ is the group of deck transformations of $p$. But $E/\bZ\times \bZ\cong X$. This proves $E$ is an abelian cover of $X$. The generating loops $a,b$ of $X$ are lifted to $E$ at each point $(i,j)$ of the fiber by $\tilde{a}:(i,j)\leadsto (i+1,j)$ and $\tilde{b}: (i,j)\leadsto (i,j+1)$. By a quick use of Van-Kampen's Theorem each loop in $E$ can be seen as a product of loops in Tic-Tac-Toe-shaped open sets, which are homotopic to loops in unit squares. But each of these is just of the form $(\tilde{\alpha}\tilde{\beta}\tilde{\overline{\alpha}}\tilde{\overline{\beta}})^n$ where $\tilde{-}$ means a lift of $-$ at some point, and from this follows that the elements of $p_*\pi_1(E)$ are products of elements of the form $\alpha\beta\overline{\alpha}\overline{\beta}=[\alpha,\beta]$. Therefore $p_*\pi_1(E)=\pi_1(X)'$. Analogously, it can be proved that the corresponding covering space of $S^1\vee S^1\vee S^1$ is $\bR\times \bZ\times \bZ\cup \bZ\times \bR\times \bZ\cup \bZ\times \bZ\times \bR$.

No comments:

Post a Comment