\(\newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \DeclareMathOperator{\Res}{Res} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}}\newcommand{\cx}{\chi} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \DeclareMathOperator{\Aut}{Aut} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} \newcommand{\ce}{\mathcal{e}} \newcommand{\fe}{\mathfrak{e}} \newcommand{\p}{\overline{p}} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\spec}{Spec} \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\maxspec}{maxSpec} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Ass}{Ass} \require{AMScd}\)

Saturday, July 7, 2018

Exercises about Residues

These are just exercises from this list (The file is likely to disappear or change someday so if that happens I'll remove the link, too).

Exercise 1. The analytic function
$$f(z)=\frac{z e^{\sin(z+1)}}{(z-(4+2i)(z^2-19i))}$$
has a power series around $z=0$. Find the radius of convergence ot this series.

Solution. The radius of convergence of this series is just $\min |z_0|$ where $z_0$ ranges over the nonremovable singularities of $f$. These singularities are just where $z=4+2i$ and $z^2=19i$ (since $ze^{\sin(z+1)}\neq 0$ for those z\neq 0). In the first case, $|z|=2\sqrt{5}=\sqrt{20}$. In the second case, since $|z^2|=|z|^2=19$ then $|z|=\sqrt{19}$. Since $\sqrt{19}<\sqrt{20}$ then the radius of convergence of this series is just $\sqrt{19}$.

Exercise 2. Let $f$ be a meromorphic, periodic function: $f(z+c)=f(z)$. Prove that for all $z_0$, $\Res_{z_0}(f)=\Res_{z_0+c}(f)$.

Proof. Take a circle $C$ small enough around $z_0$ such that $f$ is holomorphic in $\text{Int}C-\{z_0\}$. Then the function $f(z+c)$ is holomorphic in $\text{Int}(C+c)-\{z_0+c\}$ and
$$\Res_{z_0}(f)=\frac{1}{2\pi i}\int_C f(z)dz=\frac{1}{2\pi i}\int_C f(z+c)dz=\frac{1}{2\pi i}\int_{C+c} f(z)dz=\Res_{z_0+c}(f).$$

Exercise 3. Let $g(z)=f(az)$. Compute $\Res_{z_0}(g)$ in terms of $f$.

Solution. $z_0$ is an isolated singularity of $g$, iff $az_0$ is an isolated singularity of $f$. So if
$$f(z)=\sum_{n\in \bZ} a_n (z-az_0)^n$$
in a neighborhood of $az_0$, then
$$g(z)=f(az)=\sum_{n\in\bZ} a_n(az-az_0)^n=\sum_{n\in\bZ} a^n a_n(z-z_0)^n$$
in a neighborhood of $z_0$. For $n=-1$, this gives the coefficient $\Res_{z_0} g=\frac{a_{-1}}{a}=\frac{\Res_{az_0} f}{a}$.

Exercise 4. Let $f$ be a holomorphic function with a triple zero at $z_0$. Compute $\Res_{z_0} \frac{1}{f}$ in terms of $f$.

Solution. Since $z_0$ is a triple zero, $f'(z_0)=f''(z_0)=0$, which means that a series expansion of $f$ around $z_0$ will be of the form
$$\sum_{n=3}^\infty a_n (z-z_0)^n.$$
The function $\frac{1}{f}$ will have a triple pole at $z_0$, so a series expansion around $z_0$ will have the form
$$\sum_{n=-3}^\infty b_n (z-z_0)^n.$$

Since $\frac{1}{f}f=1$, and multiplying the series we get $a_3 b_{-3}=1$ from which $b_{-3}=\frac{1}{a_3}$.
We also get $a_4 b_{-3}+a_3 b_{-2}=\frac{a_4}{a_3}+a_3 b_{-2}=0$, and $\frac{a_5}{a_{3}}+a_4 b_{-2}+a_3 b_{-1}=0$.

So
$$b_{-2}=-\frac{a_4}{a_3^2}$$
and
$$b_{-1}=-\frac{\frac{a_5}{a_3}+a_4 b_{-2}}{a_3}=-\frac{\frac{a_5}{a_3}- \frac{a_4^2}{a_3^2}}{a_3}.$$

But $b_{-1}$ is the residue and $a_n=\frac{f^{(n)}}{n!}$, so we're done.

Exercise 5 is about calculating some integrals.
The first one is
$$I_1=\int_{\partial B_1(0)} \frac{e^{iz}}{z^2}dz.$$
Since $e^{iz}=1+iz+\cdots$, then $\frac{e^{iz}}{z}=\frac{1}{z^2}+\frac{i}{z}+\cdots$, so by the residue theorem $I_1=-2\pi$.

The next one is
$$\int_{\partial B_r(a)}\frac{dz}{z-a}$$
which by a Riemann sum argument is known to be $2\pi i$.

The next one is $I_3=\int_{\partial B_1(0) }\frac{\sin z}{z^3}dz$. Since all the even coefficients in the Maclaurin series of $\sin z$ are $0$, then all the odd coefficients of the Laurent series of $ \frac{\sin z}{z^3}$ are $0$, in particular the coefficient of $z^{-1}$. Thus, $I_3=0$.


No comments:

Post a Comment