\(\newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \DeclareMathOperator{\Res}{Res} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}}\newcommand{\cx}{\chi} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \DeclareMathOperator{\Aut}{Aut} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} \newcommand{\ce}{\mathcal{e}} \newcommand{\fe}{\mathfrak{e}} \newcommand{\p}{\overline{p}} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\spec}{Spec} \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\maxspec}{maxSpec} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Ass}{Ass} \require{AMScd}\)

Sunday, July 15, 2018

Exercises about Spheres

We start from the fact that any maps $f,g:S^n\to S^n$ such that $f(x)\neq g(x)$ for any $x$, satisfy $f\simeq a\circ g$ with $a$ the antipodal $a(s)=-s$, that homotopical maps have the same degree, and that $\deg (g\circ f)=\deg g\deg f$ for any $f,g:S^{n}\to S^n$. We also know that $\deg a=(-1)^{n+1}$. From this we can prove the following (From Greenberg and Harper's book on algebraic topology).

Exercise 16.8.  Let $f:S^n\to S^n$ be homotopic to a constant. Then $f$ has a fixed point and also a point $x$ at which $f(x)=-x$.
Proof. Since $f$ is homotopic to a constant, then $\deg f=0$, so $f$ must have a fixed point. Now take $g=a\circ f\simeq a\circ \text{cst}_{s_0}=\text{cst}_{-s_0}$ for some $s_0\in S^n$. By the same argument, $g$ has a fixed point, i.e. some $x$ such that $g(x)=-f(x)=x$, but this means $f(x)=-x$.

Exercise 16.9. Any map $f:S^{2n}\to S^{2n}$ has a fixed point or sends some point into its antipode.
Proof. Suppose $f$ doesn't have either a fixed point and a point sent into its antipode. Then $f\simeq a$, and since $\deg a=-1$, $\deg f=-1$. Also, since there are not points $x$ such that $f(x)=-x=a(x)$, $f\simeq a\circ a=1_{S^{2n}}$ so $\deg f=1$. This is a contradiction.

Exercise 16.12. Every map $\bR P^{2n}\to \bR P ^{2n}$ has a fixed point.
Proof. Take $f:\bR P^{2n}\to \bR P^{2n}$. Then $f$ lifts to $\tilde{f}:\bR P^{2n}\to S^{2n}$. Take $\overline{f}=\tilde f\circ \pi:S^{2n}\to S^{2n}$ where $\pi:S^{2n}\to \bR P^{2n}$ is the canonical projection. Then, by 16.9, $\overline{f}$ has a fixed point or a point $x$ such that $f(x)=-x$. In the first case, $\tilde{f}([x])=x$ and in the second one $\tilde{f}([x])=-x$ where $[x]={x,-x}\in \bR P^n$. But this means that $f([x])=\pi\circ \tilde{f}([x])=[x]$, so $[x]$ is a fixed point.

Exercise 16.13. Prove that the projection $\pi:S^n\to \bR P^n$ is not nullhomotopic.
Proof. Let's suppose it's nullhomotopic and $\sigma:S^n\to S^n$ a lift of $\pi$, which is, by . Then $\sigma$ is nullhomotopic by the lifting criterion (If $H$ is a homotopy between $\pi$ and the constant map and since $\pi$ lifts to $\sigma$, then $H$ lifts to a homotopy between $\sigma$ and a lift to the constant map, which is itself constant). Then, by Lemma 1234567, and the fact that $S^{2n}$ is simply connected, $\sigma$ is a deck transformation, which, being surjective, cannot be nullhomotopic, a contradiction.

No comments:

Post a Comment