\(\newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \DeclareMathOperator{\Res}{Res} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}}\newcommand{\cx}{\chi} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \DeclareMathOperator{\Aut}{Aut} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} \newcommand{\ce}{\mathcal{e}} \newcommand{\fe}{\mathfrak{e}} \newcommand{\p}{\overline{p}} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\spec}{Spec} \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\maxspec}{maxSpec} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Ass}{Ass} \require{AMScd}\)

Monday, July 9, 2018

Homology Groups of $((S^1\vee S^1)\vee \bR P^2)\vee \bR P^3$

The following is a problem from an exam. We'll solve it supposing we can calculate the homology groups of $\bR P^n$ at least for $n\leq 3$ (Using cellular homology they aren't hard to calculate, and the homology of $\bR P^2$ can be easily calculated using simplicial homology). So, the reduced homology groups are just $H_n(\bR P^2)=\bZ_2$ if $n=1$ and $0$ otherwise. And $H_n(\bR P^3)=\bZ_2$ if $n=1$, $\bZ$ if $n=3$ and $0$ otherwise.

Exercise. Find the fundamental group, the homology groups, and the cohomology ring mod 2 of the space $X$ given by pasting a circle, a real projective plane, and a three-dimensional real projective space to a circle along segments as follows (Ignore the blue $1-$cells):
Solution. The fundamental group is easy. $X$ is just the wedge sum $((S^1\vee S^1)\vee \bR P^2)\vee \bR P^3$ so, inductively, $\pi_1(X)\cong \bZ*\bZ*\bZ_2*\bZ_2$. Also, since the first homology group is just the abelianization of the fundamental group, we get $H_1(X)=\bZ\oplus\bZ\oplus\bZ_2\oplus\bZ_2$.

The homology group will also be computed inductively (We could use that the homology of a wedge sum is the direct sum of the homologies but we won't). To do this, take first just the wedge $S^1\vee S^1$. By the long homology sequence we have, for $n\geq 2$, an exact sequence of reduced homology groups:
$$H_n(S^1)\to H_n(S^1\vee S^1)\to H_n(S^1)$$
which is 
$$0\to  H_n(S^1\vee S^1) \to 0 $$
so $H_n(S^1\vee S^1)=\bZ\oplus \bZ$ if $n=1$ and $0$ otherwise.
In the same way, for $n\geq 2$ we get exact sequences:
$$H_n(\bR P^2)\to H_n ((S^1\vee S^1)\vee\bR P^2)\to H_n(S^1\vee S^1)$$
which are
$$0\to H_n ((S^1\vee S^1)\vee\bR P^2)\to 0$$
so for $n\geq 2$, $H_n ((S^1\vee S^1)\vee\bR P^2)=0$, and for $n=1$, $H_n((S^1\vee S^1)\vee\bR P^2)=\bZ\oplus \bZ\oplus \bZ_2$.

In a similar way, but with a slightly different result, for $n=2$ we get the exact sequence
$$H_2(\bR P^3)\to H_2(X)\to H_2(X/\bR P^3)$$
which makes $H_2(X)=0$. We also get, for $n=3$,
$$0\to H_3(\bR P^3)\to H_3(X)\to H_3(X/\bR P^3)$$
which is
$$0\to \bZ\to H_3(X)\to 0$$
which means that $H_3(X)\cong\bZ$.
For $n\geq 3$ we again get sequences of the form $0\to H_n(X)\to 0$.

Therefore, $H_n(X)=\bZ\oplus\bZ\oplus\bZ_2\oplus\bZ_2$ for $n=1$, $\bZ$ for $n=0,3$ and $0$ otherwise.

No comments:

Post a Comment