\(\newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \DeclareMathOperator{\Res}{Res} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}}\newcommand{\cx}{\chi} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \DeclareMathOperator{\Aut}{Aut} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} \newcommand{\ce}{\mathcal{e}} \newcommand{\fe}{\mathfrak{e}} \newcommand{\p}{\overline{p}} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\spec}{Spec} \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\maxspec}{maxSpec} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Ass}{Ass} \require{AMScd}\)

Saturday, July 7, 2018

When is $G\to G/H$ a covering map of topological groups?

The following, or something similar will appear in Monday's exam so I better work on it. Also, here, every neighborhood is declared to be open.

Exercise. Let $G$ be a topological group and $H$ a discrete, closed subgroup of $G$. Then $G\to G/H$ is a covering space.

The proof can be done manually, but we'll use the following proposition.

Proposition (1.40 from Hatcher's book). If an action of $H$ on a space $Y$ satisfies that each $y\in Y$ has a neighborhood $U$ such that $hU\cap U\neq \varnothing$ implies $h=1$ (A strong hypothesis of a properly discontinuous action), then
  • The quotient map $Y\to Y/H$ is a normal covering space.
  • $H$ is the group of deck transformations of $Y\to Y/H$ if $Y$ is path-connected.
  • $H$ is isomorphic to $\pi_1(Y/H)/\pi_1(Y)$ (Where $\pi_1(Y)$ is its identification as a subgroup of $\pi_1(Y/H)$) if $Y$ is path-connected and locally path-connected.
Easy Lemma. Let $G$ be a topological group. Then there for each neighborhood $U$ of $1$ there exists a neighborhood $V\subseteq U$ of $1$ such that $V=V^{-1}$ and $V^2=\{vv'\mid v,v'\in V\}\subseteq U$.
Proof of Easy Lemma. By continuity of the product $\pi$ and the product topology of $G\times G$, there exist open sets $V_1,V_2\subseteq G$ such that $1\in \pi(V_1\times V_2)\subseteq U$. Now take $V=(V_1\cap V_2)\cap (V_1\cap V_2)^{-1}$. Then $1\in V$, $V=V^{-1}$ and $V\subseteq V_1 \subseteq V_1 V_2\subseteq U$. Furthermore $V^2=\pi(V\times V)\subseteq \pi(V_1\times V_2)\subseteq U$.
Proof of Exercise. We only need to prove that the action of $H$ on $G$ by left multiplication is a covering space action. This can be done as follows.

Let $U$ be a neighborhood of $1$ such that $U\cap H=\{1\}$. Take a second neighborhood $V\subseteq U$ of $1$ such that $V=V^{-1}$ and $V^2=\{vv'\mid v,v'\in V\}\subseteq U$. It also holds that $V\cap H=\{1\}$.

Now, for each $g\in G$, take $V_g=Vg$, and let's suppose that $z\in hVg\cap Vg\neq \varnothing$ for some $h\in H$. Then $z=hvg=v'g$ for some $v,v'\in V$. This means that $hv=v'$ or $h=v'v^{-1}\in V^2\cap H$ thus $h=1$.

So, the action of $H$ on $G$ is a covering space action and $G$ is a covering space of $G/H$ via the canonical projection.

There are more consequences: $H$ is the group of deck transformations of this cover, and isomorphic to $\pi_1(G/H)/\pi_1(G)$, given that $G$ is path-connected and locally path-connected.

Easy Example. Take $G=S^1$ and $H=U_n$, the group of the $n$th roots of unity. $G/H$ is just $S^1$ with the projection defined as $z\mapsto z^n$, and $U_n\cong \bZ_n$ is the group of deck transformations.

No comments:

Post a Comment